

Shared Solution Alternative

Modeling Assumptions and Methodology November 25, 2014

This is a summary of the assumptions and methodology to be used in modeling the Shared Solution Alternative. These have been collaboratively developed through multiple meetings with the Coalition and the WDC study team. The assumptions are outlined below for each of the stated principles of the Shared Solution Alternative.

1. Compact, Mixed Use Developments

- used floor area ratios (FAR) and residential densities from the Wasatch Choices for 2040 as a starting point
- based the locations and intensities of the various development types on city inputs from the land use workshop
- further subdivided the intensities generally such that from west to east the intensity increased
- used the following dimensions to estimate the area of potential mixed use developments:
 - 500' total width for boulevards / Main Street communities (250' on either side of the roadway centerline)
 - a square ¼ mile in length on each side for town center nodes (centered on the key intersection)
 - 750' radius at circulator stops in Layton between I-15 and Hill Field Road including all intersected parcels (assumed to be town centers)
 - visual identification of candidate parcels near station communities
- used ET+ to identify candidate parcels for development/redevelopment by 2040
 within the above dimensions based on current land use and building age (along Main
 Street and Hill Field Road all intersecting parcels were assumed to be candidates,
 whereas in other areas the parcels were clipped to match the buffers)
- travel model TAZs were split to match the mixed use development / redevelopment areas
- approximately half of the buffer area (~1,800 acres) was identified as candidates for mixed use development / redevelopment
- to improve the jobs/housing balance in the study area some household growth was were moved out of the study area and some employment growth was moved into the study area (initially 5,000 households and 7,500 jobs)
- it was assumed that 1/3 of the household growth and 80% of the employment growth would take place within the mixed use development / redevelopment area
- with the target study area land use growth in place, household and employment growth were distributed among the various boulevards, town centers, etc. based on the target FAR for each (average household size and household income were also estimated for each development type, which, on average, were each assumed to be less than the original overall study area average)

- household and employment growth were distributed among the TAZs based on the proportion of each development type within each TAZ (adjustments were made to account for existing land uses that would be developed)
- growth outside of the mixed use development / redevelopment zones, but within the study area was distributed through those zones based on the original 2009 to 2040 growth assumptions and an adjustment factor that placed more growth on the east side of the study area and less growth on the west side
- outside of the study area, land use adjustments were made to account for households that were moved out of the study area and jobs that were moved into the study area
 - new households were assumed to be added to Ogden and south Davis County so as to be closer to employment centers
 - employment growth was taken most heavily from the fringes of Weber and Davis Counties and less heavily from the more urbanized areas
- during the land use development process a goal for the total trip generation within the study area to be approximately equal to that of the other modeled alternatives in the EIS based on this goal 3,500 households and jobs were moved into the study area (out of the 5,000 households that were originally moved out and in addition to the 7,500 that were originally moved in)
- Reid Ewing is reviewing the changes in auto ownership due to the adjusted land use adjustments may be made based on his feedback

2. Boulevard Roadway Configurations

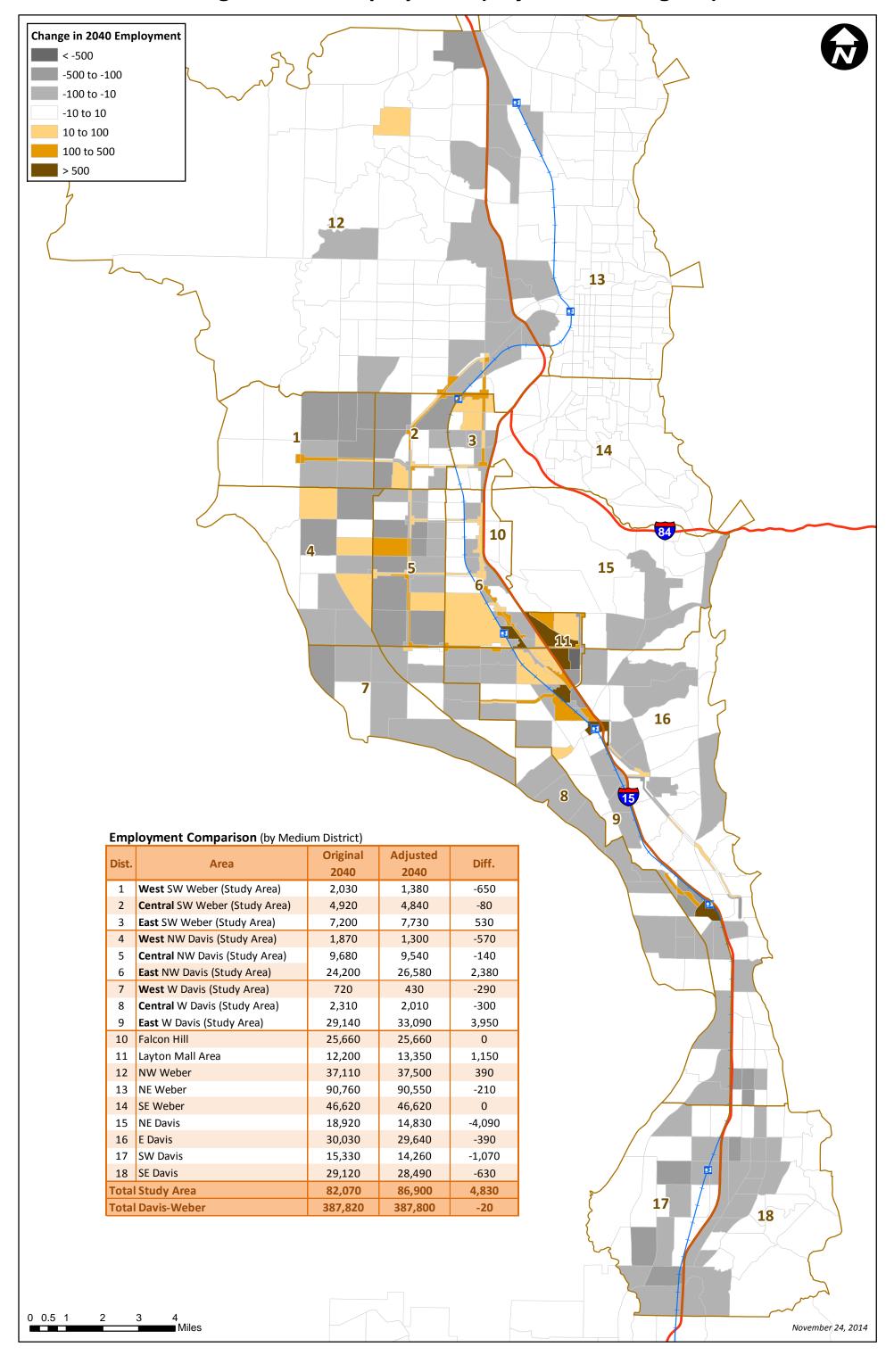
- let the model predict the speed based on area and facility type
- assumed capacity increase from innovative intersections based on the following:
 - SYNCHRO model capacity analysis comparing no-build and innovative intersections
 - started with 2040 volumes from examples in study area (Antelope, State, etc)
 - increase volumes until intersection failure to measure the increase in capacity
 - resulted in an average capacity increase of 17%
- apply the 17% capacity increase to the links that include the nodes
- apply 22% capacity increase to links at the intersections of State Street with Antelope, Hillfield, SR-193, 1800 N, 5600 South
- assumed an innovative intersection treatment at every node shown on the map
- assumed that the delay per left turning vehicle is 1 minute. Assumed 20% of volume at high volume intersections (22% capacity improved) is delayed 1 minute and 10% at low volume intersections (17% capacity improved) is delayed 1 minute.

3. Incentivized Transit

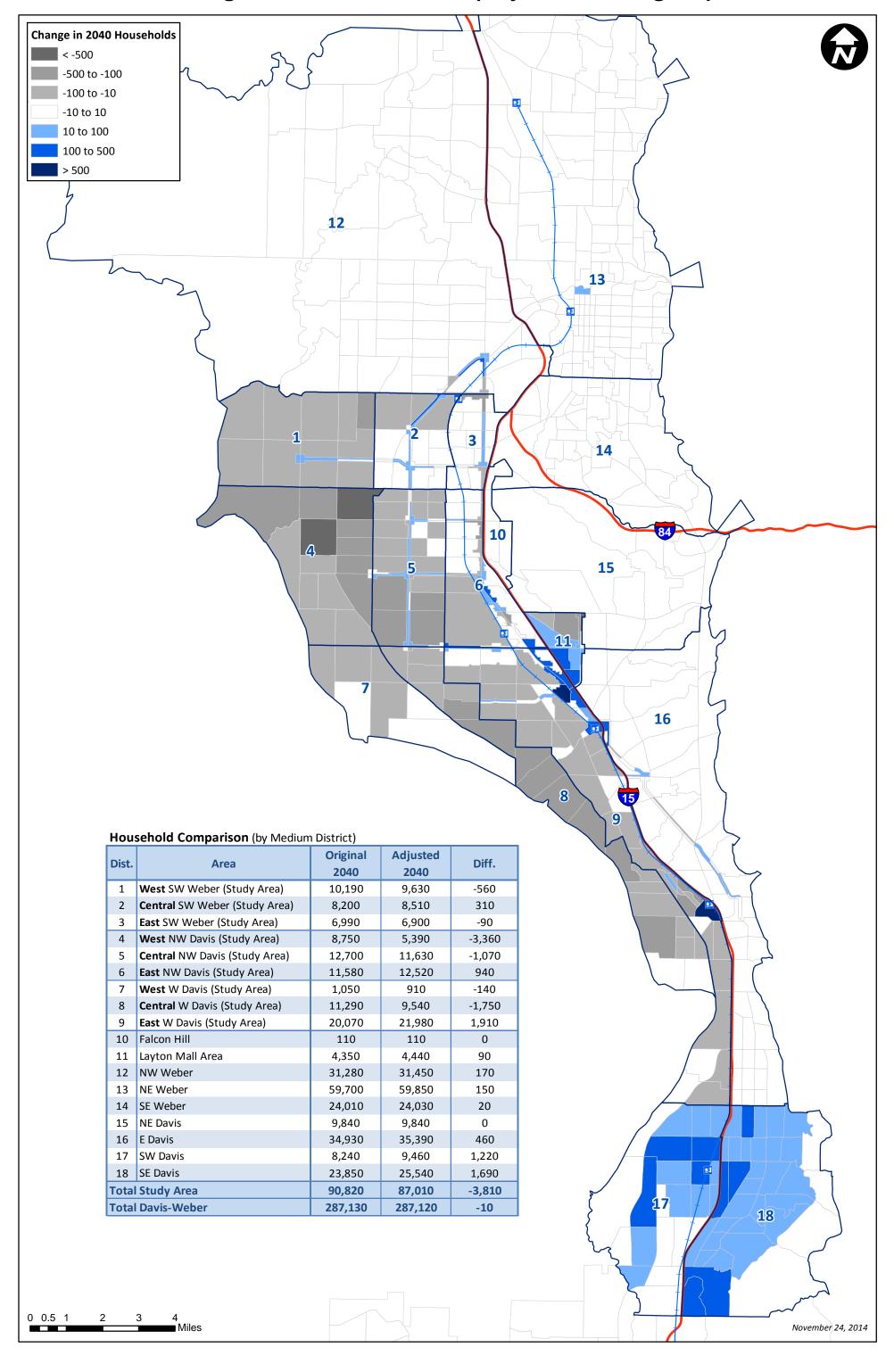
- propose a \$50 monthly UTA pass for Davis County riders
- propose a \$50 Frontrunner Pass for Weber Co. residents
- modify script in the model to account for this
- increase the walk buffer near BRT and rail stations to 0.5 miles
- model intermodal hubs as seamless transfers

4. Connected, Protected Bikeways

- baseline bike share is 0.3% for Davis County (Census data that refers to primary mode)
- use prediction from Shaunna Burbidge on future commuter trip bike share of 3%
- adjust distance factor or the utility coefficient to hit the target
- focus the percentage improvements in the redevelopment zones
- verify the number of home-based other trips with Shaunna


5. Preventative ramp-metering

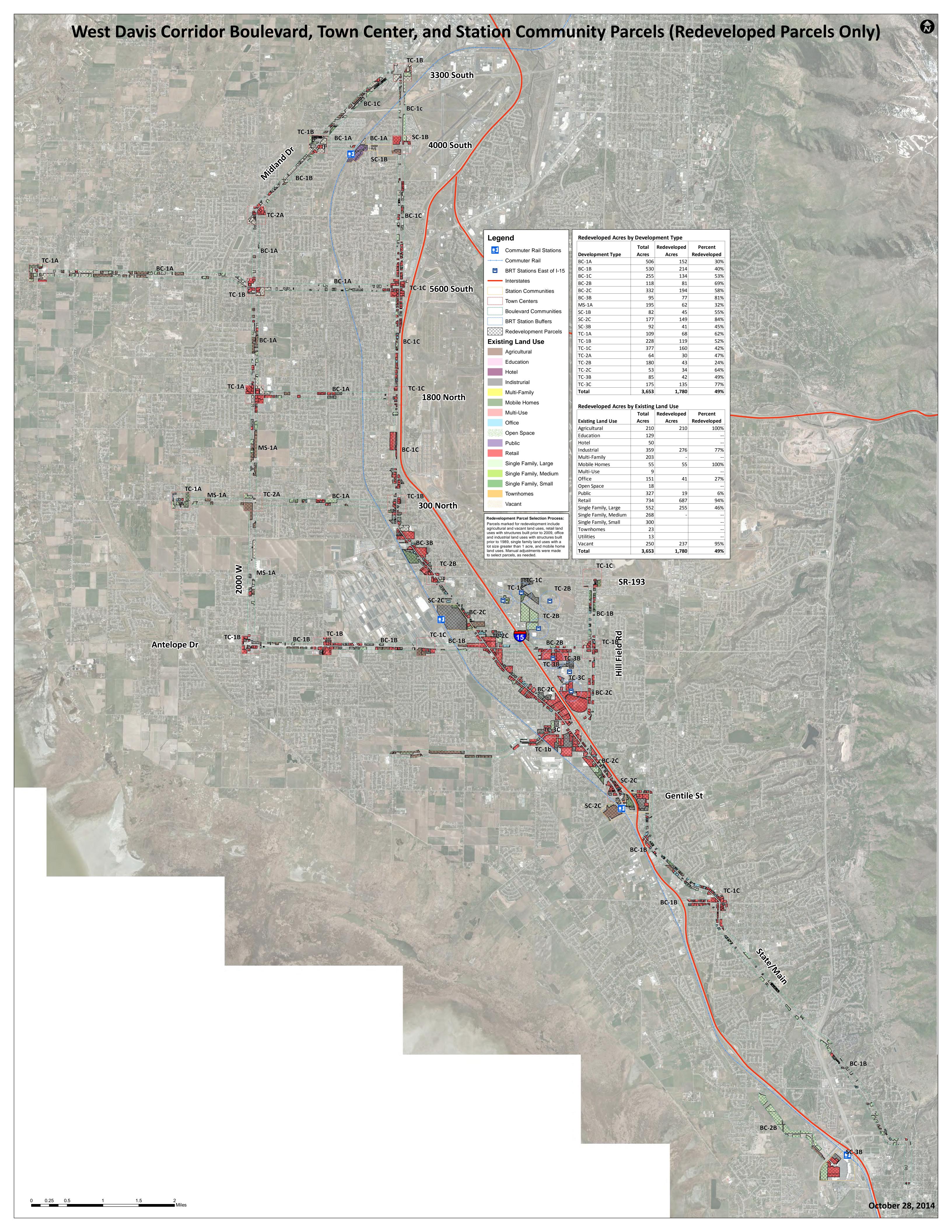
- assume max. 8 minutes ramp wait time
- add penalty to on-ramp link
- using script that Mike sent and modified it for metering only in AM and PM periods
- assume ramp meters are placed from Bountiful to Riverdale Rd.


6. Strategically Placed I-15 Overpasses

- model directly in proposed locations

Change in 2040 Employment (Adjusted vs. Original)

Change in 2040 Households (Adjusted vs. Original)


WDC Study Area Development Types

Development	Acres of	Floor A	rea Ratios		dential vs. ercial Ratio Retail vs. Office Ratio Resulting Households & Households & Employment per Net Acre Resulting Households & Employment per Net Gross Acre HH Size HH Incomplete HH Incomplete HH Size HH Incomplete HH	HH Income												
Type Name	Development 1	Target	Range (per handout)	Residential	Commercial	Retail	Office	Household	Retail Employment	Office Employment	Household	Retail Employment	Office Employment	Household	Retail Employment	Office Employment		
BC-1a	152	0.23	0.35 to 0.75	71%	29%	60%	40%	636	408	505	6	15	29	4.2	2.7	3.3	2.80	51,121
BC-1b	214	0.30	0.35 to 0.75	69%	31%	58%	42%	1,135	774	1,040	8	20	37	5.3	3.6	4.9	2.71	49,893
BC-1c	134	0.36	0.35 to 0.75	66%	34%	56%	44%	816	616	898	9	24	45	6.1	4.6	6.7	2.65	48,828
BC-2b	81	0.45	0.75 to 1.00	64%	36%	56%	44%	635	492	719	12	30	56	7.8	6.1	8.9	2.50	47,208
BC-2c	194	0.53	0.75 to 1.00	61%	39%	54%	46%	1,708	1,451	2,296	14	36	66	8.8	7.5	11.8	2.37	45,746
BC-3b	77	0.54	> 1.0	59%	41%	53%	47%	668	606	997	15	36	67	8.7	7.9	13.0	2.05	45,562
TC-1a	68	0.31	0.5 to 1.0	55%	45%	48%	52%	297	305	614	8	21	39	4.4	4.5	9.0	2.51	49,716
TC-1b	119	0.40	0.5 to 1.0	53%	47%	45%	55%	687	675	1,531	11	27	50	5.8	5.7	12.9	2.26	48,111
TC-1c	160	0.50	0.5 to 1.0	51%	49%	41%	59%	1,111	1,077	2,878	14	34	62	6.9	6.7	18.0	2.11	46,297
TC-2a	30	0.59	1.0 to 1.5	51%	49%	44%	56%	246	256	604	16	40	73	8.2	8.5	20.1	1.96	44,636
TC-2b	43	0.67	1.0 to 1.5	49%	51%	40%	60%	384	394	1,097	18	45	83	8.9	9.2	25.5	1.89	43,138
TC-2c	34	0.76	1.0 to 1.5	48%	52%	38%	62%	338	342	1,037	21	51	95	9.9	10.1	30.5	1.82	41,427
TC-3b	42	0.95	> 1.5	47%	53%	44%	56%	511	624	1,474	26	64	118	12.2	14.8	35.1	1.76	37,729
TC-3c	135	1.04	> 1.5	46%	54%	75%	25%	1,758	3,811	2,359	28	70	129	13.0	28.2	17.5	1.70	35,937
SC-1b	45	0.50	0.50 to 1.25	62%	38%	33%	67%	380	189	713	14	34	62	8.4	4.2	15.8	2.10	46,297
SC-2c	149	1.05	1.25 to 2.5	58%	42%	28%	72%	2,470	1,233	5,888	29	70	131	16.6	8.3	39.5	1.73	35,736
SC-3b	41	1.30	> 2.50	57%	43%	26%	74%	827	399	2,111	35	87	162	20.2	9.7	51.5	1.57	30,610
MS-1a	62	0.32	0.5 to 1.0	50%	50%	48%	52%	240	319	642	8	21	40	3.9	5.1	10.4	2.54	49,539
Total	1,780	0.55		56%	44%	48%	52%	14,846	13,969 41,	27,404 373	15	37	68	8.3	7.8	15.4	2.11	42,692

Trip Generation Comparison

November 24, 2014

Med.	Area	Origin	al 2040 (Old	l TAZs)	Original 2040 (New TAZs)			Adjusted 2040 (New TAZs)			Difference (Adj. minus Orig.)		
Dist.	Area	Prod.	Attr.	Total	Prod.	Attr.	Total	Prod.	Attr.	Total	Prod.	Attr.	Total
1	West SW Weber (Study Area)	108,930	53,430	162,360	110,290	53,360	163,650	103,800	49,330	153,130	-5,130	-4,100	-9,230
2	Central SW Weber (Study Area)	94,810	66,300	161,110	96,100	66,220	162,320	99,960	70,080	170,040	5,150	3,780	8,930
3	East SW Weber (Study Area)	77,350	77,850	155,200	78,130	77,750	155,880	78,740	80,570	159,310	1,390	2,720	4,110
4	West NW Davis (Study Area)	92,270	45,200	137,470	93,100	45,210	138,310	56,030	28,240	84,270	-36,240	-16,960	-53,200
5	Central NW Davis (Study Area)	152,300	122,480	274,780	153,380	122,490	275,870	144,970	120,630	265,600	-7,330	-1,850	-9,180
6	East NW Davis (Study Area)	142,310	159,670	301,980	150,240	174,390	324,630	162,640	194,760	357,400	20,330	35,090	55,420
7	West W Davis (Study Area)	12,430	7,810	20,240	12,480	7,810	20,290	11,190	5,780	16,970	-1,240	-2,030	-3,270
8	Central W Davis (Study Area)	121,380	62,710	184,090	121,830	62,780	184,610	103,970	54,330	158,300	-17,410	-8,380	-25,790
9	East W Davis (Study Area)	284,070	303,410	587,480	277,500	288,980	566,480	294,780	324,500	619,280	10,710	21,090	31,800
10	Falcon Hill	49,930	142,500	192,430	49,830	142,340	192,170	49,820	142,340	192,160	-110	-160	-270
11	Layton Mall Area	47,140	81,320	128,460	57,380	91,800	149,180	63,320	103,690	167,010	16,180	22,370	38,550
12	NW Weber	446,520	357,100	803,620	448,820	355,690	804,510	450,550	355,460	806,010	4,030	-1,640	2,390
13	NE Weber	748,290	781,130	1,529,420	750,390	779,310	1,529,700	750,430	776,730	1,527,160	2,140	-4,400	-2,260
14	SE Weber	353,690	459,350	813,040	354,180	458,660	812,840	354,290	458,760	813,050	600	-590	10
15	NE Davis	151,420	172,920	324,340	144,600	166,070	310,670	133,520	134,940	268,460	-17,900	-37,980	-55,880
16	E Davis	413,480	341,530	755,010	412,720	337,580	750,300	413,640	332,920	746,560	160	-8,610	-8,450
17	SW Davis	114,010	109,360	223,370	114,470	109,490	223,960	141,270	103,840	245,110	27,260	-5,520	21,740
18	SE Davis	279,220	293,360	572,580	280,410	293,760	574,170	291,650	296,830	588,480	12,430	3,470	15,900
Study	Area Total	1,085,850	898,860	1,984,710	1,093,050	898,990	1,992,040	1,056,080	928,220	1,984,300	-29,770	29,360	-410
Davis-	Weber Total	3,689,550	3,637,430	7,326,980	3,705,850	3,633,690	7,339,540	3,704,570	3,633,730	7,338,300	15,020	-3,700	11,320

November 26, 2014

To: Mr. Ted Knowlton, Deputy Director Wasatch Front Regional Council

From: Roger Borgenicht for the Shared Solution Coalition

RE: Request for approval to use modified land use scenario and model refinements to evaluate the

Shared Solution Alternative

For the last six months, UDOT and the Shared Solution Coalition ("Coalition") have been collaboratively developing the Shared Solution Alternative ("Alternative") as part of the West Davis Corridor (WDC) study. This alternative is fundamentally different from all previously studied WDC alternatives because it proposes both transportation investments and a modified land use vision to accommodate future travel demand in West Davis. To quote the Shared Solution Elements Map, "The Shared Solution Alternative to the West Davis Freeway grows out of the Wasatch Choice for 2040. This Alternative recognizes the growth that is coming to our region, and envisions a future that meets our growing need without destroying our quality of life. We understand that transportation investments over the coming decades will affect our travel needs as well as how our cities and towns grow and change. This Alternative therefore proposes transportation investments that bring job opportunities to Davis and Weber Counties and create better balance between automobile, transit, walk and bike trips."

Investment in the Alternative's transportation projects will necessarily produce land uses changes over time. We have therefore modified the land use projections for the West Davis Study Area in collaboration with West Davis cities in a Shared Solution Alternative Workshop on September 4, 2014.

In addition, because the principles and projects of the Alternative are more than simple roadway links, further modification of the travel model is necessary to model the impacts of the investments. Boulevard roadway design, innovative intersections, incentivized transit and an enhanced bike network are principles of the Alternative whose impact is not easily captured by the regional transportation model (see Shared Solution Elements Map for a detailed description of all six principles.) UDOT and the Shared Solution Coalition, including technical advisors from Avenues Consulting, HDR, Horrocks and Metroanalytics, developed modelling assumptions and methodologies in order to effectively evaluate the travel outcomes from the Alternative's investments.

We have provided a number of documents that describe the proposed land use and model refinements, including modelling assumptions and methodologies, and the modified socioeconomic data for the travel demand model.

As per the Memorandum of Agreement between UDOT and the Coalition, the Wasatch Front Regional Council must approve the alternative land use and socioeconomic data for trial modelling of the Alternative. We hope you and your staff will review the attached documents and recommend changes if necessary. If you approve without change, we ask that you draft a letter to UDOT approving the use of the modified land use scenario and model refinements to evaluate the Shared Solution Alternative.

Sincerely,

Roger Borgenicht

Co-Chair Utahns for Better Transportation

for Shared Solution Coalition

(801) 355-7085

The Shared Solution Alternative

A Proposal for Livability and Mobility in West Davis and Weber Counties

The Shared Solution Alternative to the West Davis Freeway grows out of the Wasatch Choice for 2040, "a vision for building the future we want." This Alternative recognizes the growth that is coming to our region, and envisions a future that meets our growing need without destroying our quality of life.

The Shared Solution propose a transportation system and land use vision that provide more choices for living, working, and getting around. We understand that transportation investments over the coming decades will affect our travel

needs as well as how our cities and towns grow and change. This Alternative therefore proposes transportation investments that bring job opportunities to Davis and Weber Counties and create better balance between auto, transit, walk and bike trips. Smart design and sequencing of these transportation investments can reduce the rate of growth of vehicle miles traveled, improve air quality, preserve the natural landscape and enhance our quality of life.

20th St

strategic locations (typical)

200 North

Improve Kaysville-

connection to

E-Antelope Dr

Ramp metering at all

Kavsville

Shepard Lan

E 200 N

new ridership

Farmington

Farmington

Glovers Lane

Improve FrontRunner

fare structure to attract Heights

I-15 access points

East Mountain

- New Park Lane

bicycle and

pedestrian

connection,

Legacy Trail

Farmington

shuttle service

(106)

extension

Expand

E Cherry

New transit circulators serving cours

key destinations, i.e. Freeport

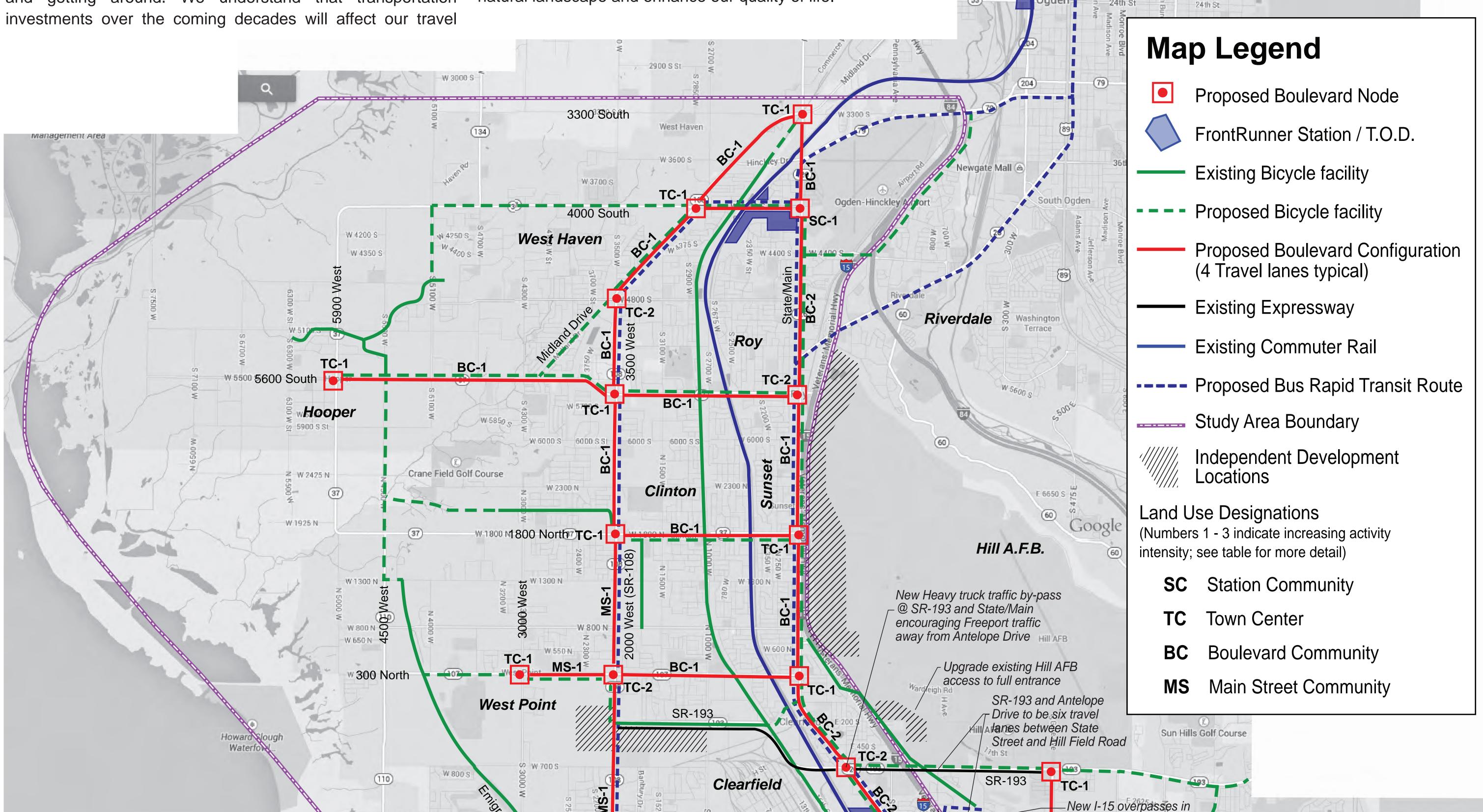
Center and Clearfield Hill AFB

TC-2

Layton Parkway

New D&RG trail underpasses-

Parkway, 200 North, Shepard


at Gentile Street, Layton

Lane and Clark Lane

BC-2

Layton

² Ogden

TC-1

and Antelope

Syracuse

Gentile Street

Bike/pedestrian overpass

FrontRunner station

Bike underpass at Main

from Freeport to Clearfield

TC-1

Hill Field Road

Extend Bluff Road south of Gentile

Parkway (all of Bluff Road north of

Street to connect with Layton

2700 West to be three lanes)

Principles of the Shared Solution

- 1. Compact, mixed-use developments at boulevard nodes create walkable activity centers with a variety of business, housing, and transportation choices for people of all ages, income-levels, and abilities. High quality design is critical to the value and success of livable, walkable places.
- 2. Boulevard roadway configurations, like the Center-median Boulevard and the Multi-way Boulevard, create an enhanced arterial grid for travel throughout Davis County. Utilizing newly invented innovative intersections, these roadways allow users to drive slower but travel faster. Boulevards maximize safety for all users and make choosing active transportation and transit a viable option. In most cases, boulevard enhancements, including increasing the number of travel lanes, can be achieved within the existing right-of-way by repurposing existing wide shoulders.
- 3. Incentivized transit including improved fare structures, suburban shuttles to FrontRunner, improved park- or bike-and-ride options, intuitive routing, and peak hour priority bus lanes.
- 4. Connected, protected bikeways that link neighborhoods and activity centers to transit and provide safe transportation and recreation use for all users. Bikeways should be physically separated from vehicle traffic where feasible, possibly as attractive underpasses at challenging intersections.
- 5. Preventative ramp-metering at all I-15 access points in the study area to optimize freeway flow during peak congestion.
- 6. Strategically placed I-15 overpasses separating local circulation from freeway traffic eases peak hour east-west congestion. Overpasses should be designed for the safety and convenience of all users, including pedestrians, wheelchair users and bicyclists.

Boulevard Node

Boulevard Nodes are vibrant, pedestrian friendly, mixed-use places that respond to the needs of their individual community contexts. These nodes encourage commercial and residential activity while providing safe and convenient transportation options for all. Implementing Form Based Code at these nodes can ensure robust economic development and beautiful place making. Where possible, boulevard nodes incorporate innovative intersections that eliminate left-hand turns thereby improving intersection efficiency. Where possible, Boulevard roadways at the Nodes will become Multi-way Boulevards with separated commercial access lanes.

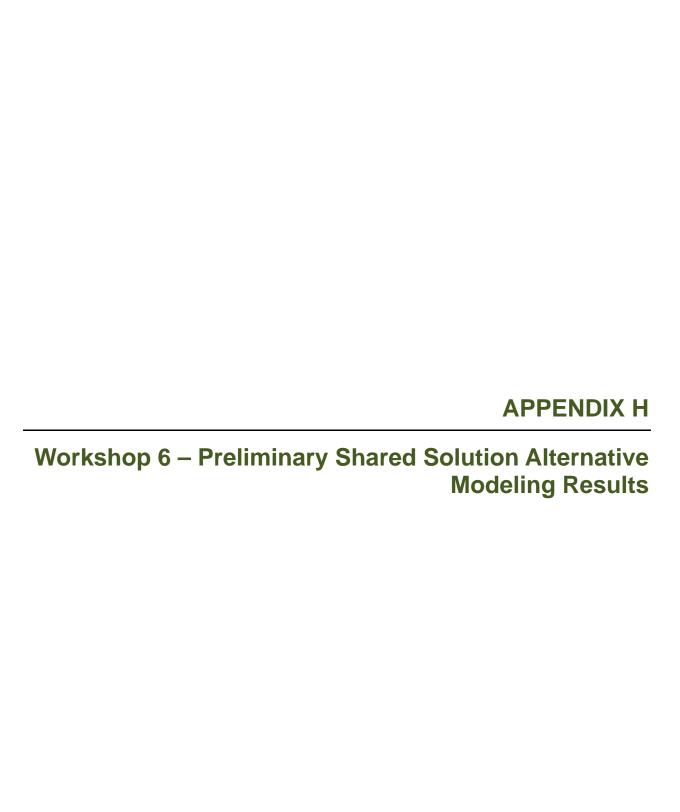
Boulevard Types Center-median Boulevard

Center median boulevards are beautiful streets that connect activity centers while providing efficiency for longer distance trips. These boulevards maximize traffic flow and safety by limiting left hand turns at major intersections and optimizing signal synchronization.

Multi-way configurations occur at Boulevard Nodes where they provide continuous lanes for through travel and commercial access lanes for destination travel. Median separations reduce side friction on through lanes and provide safety for sidewalk users at these activity centers. Multi-way boulevards also make great Bus Rapid Transit (BRT) corridors and can improve transit opportunities in Davis and Weber Counties.

References:

Multi-way Boulevard


Antelope Drive

Designing Walkable Urban Thoroughfares: A Context Sensitive Approach Institute of Transportation Engineers Guide, 2010

Wasatch Choice for 2040

Prepared by Utahns for Better Transportation and the Shared Solution Coalition Contact: (801) 355-7085 / utahnsforbettertransportation@gmail.com
*Map for developed for transportation performance analysis and is subject to change

November 2014

Meeting Agenda

West Davis Corridor EIS UDOT Project No. SP-0067(14)0

Meeting Name: WDC Shared Solution Screening Results Workshop

Meeting Date: Thursday, December 18, 2014

Meeting Time: 2:00 – 5:00 PM

Location: West Point City Hall (3200 West 300 North, West Point City)

Agenda:

- 1. Welcome and Introductions Dan Adams (5 minutes)
- 2. Purpose of the Meeting Randy Jefferies (15 minutes)
 - Review Preliminary Screening Results
- 3. Land Use Assumptions & Approval Process (30 minutes)
 - Review Land Use Development Process Ivan Hooper
 - Q & A City/County Feedback
 - Approval process What information do the cities need? Randy Jefferies
- 4. Transit Assumptions & Approval Process (15 minutes)
 - Review Transit Scope and Assumptions Mike Brown
 - i. UTA discussion on subsidized fares
 - Q & A City/County Feedback
 - Approval process What information does UTA need? Randy Jefferies
- **5. Trails Scope and Assumptions** Roger Borgenicht (10 minutes)
 - Q & A
- 6. Break 10 Minutes
- 7. Breakout Tables Innovative Intersections Randy Jefferies (45 minutes)
 - Description of intersection types
 - Work at tables
- 8. Next Steps & Schedule Randy Jefferies, UDOT (10 minutes)

West Davis Corridor EIS Shared Solution Alternative Workshop #6 December 18, 2014

Please sign in

Х

NAME	ORGANIZATION	ATTENDED
Adam Lenhard	Clearfield	
Alex R. Jensen	Layton	
Andy Neff	The Langdon Group	
Andy Thompson	Kaysville	
Ann Floor	UBET	X
Ari Bruening	Envision Utah	
Barbara Keyt	UTA	
Barry Burton	Davis County	
Ben Wuthrich	WFRC	
Betsy Herrmann	USFWS	
Beverley Macfarlane	Sunset	
Bill Wright	Layton	
Bob Stevenson	Layton, Mayor	
Boyd Davis	West Point	X
Brandon Weston	UDOT	
Brian Moench	UT Phys. for Healthy Environ.	
Brianne Olsen	The Langdon Group	
Brody Bovero	Syracuse	λ.
Cameron Cova	Breathe Utah	
Carl Ingwell	Clean Air Now	
Charles Allen	Inter Plan	
Chris Lizotte	UDOT	
Chris Montague	TNC	X
Christopher G. Davis	Roy	
Curt McCuistion	Syracuse	
Dan Adams	The Langdon Group	
Dave Millheim	Farmington	X
David Peterson	Farmington	×
Davie Thompson	Avenue Consultants	

West Davis Corridor EIS Shared Solution Alternative Workshop #6 December 18, 2014

Please sign in

X

NAME	ORGANIZATION	ATTENDED
Adam Lenhard	Clearfield	
Alex R. Jensen	Layton	
Andy Neff	The Langdon Group	
Andy Thompson	Kaysville	
Ann Floor	UBET	
Ari Bruening	Envision Utah	
Barbara Keyt	UTA	
Barry Burton	Davis County	
Ben Wuthrich	WFRC	
Betsy Herrmann	USFWS	
Beverley Macfarlane	Sunset	
Bill Wright	Layton	
Bob Stevenson	Layton, Mayor	
Boyd Davis	West Point	
Brandon Weston	UDOT	
Brian Moench	UT Phys. for Healthy Environ.	
Brianne Olsen	The Langdon Group	
Brody Bovero	Syracuse	
Cameron Cova	Breathe Utah	
Carl Ingwell	Clean Air Now	
Charles Allen	Inter Plan	
Chris Lizotte	UDOT	
Chris Montague	TNC	
Christopher G. Davis	Roy	
Curt McCuistion	Syracuse	
Dan Adams	The Langdon Group	
Dave Millheim	Farmington	
David Peterson	Farmington	
Davie Thompson	Avenue Consultants	

West Davis Corridor EIS Shared Solution Alternative Workshop #6 December 18, 2014

Please sign in

Adam Lenhard Clearfield Alex R. Jensen Layton	
a 1 a) 66	
Andy Neff The Langdo	on Group
Andy Thompson Kaysville	V
Ann Floor UBET	
Ari Bruening Envision Ut	ah
Barbara Keyt UTA	
Barry Burton Davis Coun	ty
Ben Wuthrich WFRC	Χ.
Betsy Herrmann USFWS	
Beverley Macfarlane Sunset	
Bill Wright Layton	
Bob Stevenson Layton, Ma	
Boyd Davis West Point	
Brandon Weston UDOT	
Brian Moench UT Phys. fo	r Healthy Environ.
Brianne Olsen The Langdo	on Group
Brody Bovero Syracuse	
Cameron Cova Breathe Ut	ah
Carl Ingwell Clean Air N	ow
Charles Allen Inter Plan	
Chris Lizotte UDOT	
Chris Montague TNC	
Christopher G. Davis Roy	
Curt McCuistion Syracuse	
Dan Adams The Langdo	on Group
Dave Millheim Farmingtor	1
David Peterson Farmingtor	n
Davie Thompson Avenue Co	nsultants

Korry Green	Hooper	
Kris Peterson	UDOT	
Kyle Laws	West Point	KWL
Leigh Gibson	Intrepid	
Leona Dalley	UDOT	
Leslie Duersch	UBET	
Linda Youngbell	Sunset	
Lynn de Freitas	FRIENDS of Great Salt Lake	
Lynn Vinzant	Clinton	
Madison Sehlke	The Langdon Group	
Mark Shepherd	Clearfield	1 1
Matt Sibul	UTA	
Michael Brown	Technical Advisor	MR
Mike Gailey	Syracuse	
Mike McBride	Glen Eagle Golf Course	
Mike Seely	Horrocks	
Mike Weland	URMCC	
Mitch Adams	Clinton	
Ned Hacker	WFRC	1 72
Noah Steele	Syracuse	
Norm Marshall	Technical Advisor	
Pam Krammer	DWR	
Paul Beaudet	Western Wildlife Conserv.	
Paul Ziman	FHWA	
Peter Matson	Layton City	
Phil Strobel	EPA	
Randy Jefferies	UDOT	
Reid Ewing	Technical Advisor	
Renae Widdison	UBET	
Rex Harris	UDOT	
Richard Mingo	URMCC	
Rob Dubuc	Western Resource Advocates	
Robert Grow	Envision Utah	
Robert Whiteley	Syracuse	
Roger Borgenicht	UBET	1 Contraction
Roger Borgenicht	UBET	
Ron Mortimer	Horrocks	
Russ Robertson	FHWA	
Scott Festin	WFRC	
Scott Hess	Clearfield, Planner	

Cap

Korry Green	Hooper	
Kris Peterson	UDOT	H
Kyle Laws	West Point	
Leigh Gibson	Intrepid	14-
Leona Dalley	UDOT	
Leslie Duersch	UBET	
Linda Youngbell	Sunset	
Lynn de Freitas	FRIENDS of Great Salt Lake	hde f
Lynn Vinzant	Clinton	
Madison Sehlke	The Langdon Group	
Mark Shepherd	Clearfield	
Matt Sibul Lee	With Dome	
Michael Brown	Technical Advisor	
Mike Gailey	Syracuse	10
Mike McBride	Glen Eagle Golf Course	
Mike Seely	Horrocks	
Mike Weland	URMCC	
Mitch Adams	Clinton	
Ned Hacker	WFRC	W.56V
Noah Steele	Syracuse	
Norm Marshall	Technical Advisor	
Pam Krammer	DWR	OK.
Paul Beaudet	Western Wildlife Conserv.	
Paul Ziman	FHWA	
Peter Matson	Layton City	
Phil Strobel	EPA	
Randy Jefferies	UDOT	
Reid Ewing	Technical Advisor	
Renae Widdison	UBET	
Rex Harris	UDOT	
Richard Mingo	URMCC	
Rob Dubuc	Western Resource Advocates	com
Robert Grow	Envision Utah	
Robert Whiteley	Syracuse	
Roger Borgenicht	UBET	
Roger Borgenicht	UBET	
Ron Mortimer	Horrocks	
Russ Robertson	FHWA	
Scott Festin	WFRC	
Scott Hess	Clearfield, Planner	V
эсон пезу	Clearneid, Planner	

spelling please!

Scott Stevenson	Sunset	
Sean Wilkinson	Weber County	
Shane Marshall	UDOT	
Sharon Bolos	West Haven	,
Sherrie Christensen	Syracuse	V
Steve Anderson	West Haven	
Steve Erickson	Utah Audubon Council	
Steve Hiatt	Kaysville	
Steve Parkinson	Roy City	
Steven Lord	Horrocks	
Ted Knowlton	WFRC	1
Terry Palmer	Syracuse	V
Tim Rodee	Citizens for a Better Syracuse	
Tim Wagner	Sierra Club	
Vince Izzo	HDR	
Wayne Martinson	National Audubon Society	
Willard Cragun	Roy, Mayor	
Woody Woodruff	Layton	
Yaeko Bryner	Friends of the Great Salt Lake	
Zach Frankel	Utah Rivers Council	
	Utah Mud Motor Association	
1.1	National Audubon Society	0
Kerry Doane	Utah Transit Authorit	n KOD
BILL WRIGHT	LAYton	11/
Beverly MACHACLAN	20 Junset City, MACROR	V

Scott Stevenson	Sunset	
Sean Wilkinson	Weber County	
Shane Marshall	UDOT	
Sharon Bolos	West Haven	
Sherrie Christensen	Syracuse	
Steve Anderson	West Haven	
Steve Erickson	Utah Audubon Council	
Steve Hiatt	Kaysville	
Steve Parkinson	Roy City	
Steven Lord	Horrocks	
Ted Knowlton	WFRC	X/
Terry Palmer	Syracuse	
Tim Rodee	Citizens for a Better Syracuse	
Tim Wagner	Sierra Club	
Vince Izzo	HDR	
Wayne Martinson	National Audubon Society	
Willard Cragun	Roy, Mayor	
Woody Woodruff	Layton	
Yaeko Bryner	Friends of the Great Salt Lake	
Zach Frankel	Utah Rivers Council	
	Utah Mud Motor Association	
	National Audubon Society	0
Bryan Dules	PZI	×
0 0		
	-	

5.4

Scott Stevenson	Sunset	
Sean Wilkinson	Weber County	
Shane Marshall	UDOT	
Sharon Bolos	West Haven	
Sherrie Christensen	Syracuse	
Steve Anderson	West Haven	
Steve Erickson	Utah Audubon Council	
Steve Hiatt	Kaysville	
Steve Parkinson	Roy City	88
Steven Lord	Horrocks	
Ted Knowlton	WFRC	
Terry Palmer	Syracuse	0
Tim Rodee	Citizens for a Better Syracuse	X
Tim Wagner	Sierra Club	V
Vince Izzo	HDR	
Wayne Martinson	National Audubon Society	
Willard Cragun	Roy, Mayor	
Woody Woodruff	Layton	
Yaeko Bryner	Friends of the Great Salt Lake	
Zach Frankel	Utah Rivers Council	
	Utah Mud Motor Association	
	National Audubon Society	
Jeff Wer	Duris County	X
Joe Perrin	A-Trans Engineening	W
	J J	1

Deb Sigman	Breathe Utah	
Dennis Cluff	Clintonr	
DJ Williams	Utah Waterfowl Association	X
Don Lever	UBET	
Eric Anderson	Farmington	
Eric Rasband	UDOT	
Erik Craythorne	West Point	
Glenn Bronson	Utah Airboat Association	
GJ LaBonty	UTA	
Greg Scott	WFRC	
Heather Dove	Great Salt Lake Audubon	
Heather Dove	GSL Audubon	
Ivan Hooper	Avenue Consultants	A Laboratory
J.J. Allen	Clearfield	
Jan Zogmaister	Weber County	
Jared Hall	Roy	V .
Jared Hall	Roy	
Jason Steed	Citizens for Better Syracuse	
Jayson Clough	Horrocks	7
Jeff Bilsky	Utah Birders	
Jeff Harris	UDOT	
Jen Fowler	The Langdon Group	
Jenny Schow	Syracuse	
Jim Talbot	Farmington	
John Buttenob	HDR	
John Gleason	UDOT	
John Larsen	WFRC	
John Petroff	Davis County	X
John Thacker	Kaysville	X
John Urbanic	USACE	
Josh King	The Langdon Group	
Josh Noble	Utah Mud Motors	M
Judy	Hooper	
Julia McCarthy	EPA	
Karen Hamilton	EPA	Marie Territoria
Kathy Van Dame	Wasatch Clean Air Coalition	
Kevin Kilpatrick	HDR	
Kevin Snow	Sunset	
Kirk Robinson	Western Wildlife	

WEST DAVIS

ENVIRONMENTAL IMPACT STATEMENT

Shared Solution Alternative Workshop

December 18, 2014

Workshops

- June 18th Gather ideas on land use, roadway, and transit
- July 2nd Refine roadway elements
- July 28th Refine transit elements
- Sept. 4th Gather input on land use
- Sept. 25th Finalize the alternative
- Dec. 18th Screening Update

Meetings w/ Coalition

- July 8th discuss roadway elements
- July 22nd discuss roadway elements
- Aug. 5th discuss roadway and transit elements
- Aug. 12th meet with UTA on transit elements
- Aug. 21st meet with UTA on Frontrunner
- Sept. 8th summarize land use feedback
- Sept. 11th finalize map of alternative
- Sept. 29th review feedback from cities and UTA
- Oct. 8th discuss modeling assumptions
- Oct. 14th meet with WFRC on land use
- Oct. 22nd discuss land use & modeling assumptions
- Oct. 30th discuss land use & modeling assumptions
- Nov. 6th discuss land use & modeling assumptions
- Nov. 18th finalize land use & modeling assumptions
- Nov. 24th summarize the development process
- Dec. 9th meet with WFRC on land use
- Dec. 11th finalize settings in model
- Dec. 15th review modeling results

Alternative	Daily Total Delay (hr)	North-South Road Lane- Miles with V/C≥0.9	East-West Road Lane- Miles with V/C ≥ 0.9	Vehicle-Miles Traveled (VMT) with V/C ≥ 0.9	Vehicle-Hours Traveled (VHT) with V/C ≥ 0.9	
No-Action	10,760	43.5	26.9	245,500	9,490	
TSM/TDM	9,890	40.2	23.1	231,300	8,550	
01	10,640	43.9	26.2	244,200	9,440	
02	10,080	42.1	27.1	242,800	9,200	
04	8,810	42.8	16.6	225,900	7,520	
05	7,660	15.0	16.6	68,500	4,400	
06	9,880	34.9	26.6	225,100	8,370	
07	8,690	9.3	27.2	82,000	5,540	
08	6,830	7.8	15.4	50,300	3,320	
09A	7,240	10.3	26.6	83,000	4,490	
09B	10,450	58.4	26.0	272,900	9,830	
09C	9,070	34.4	26.6	208,800	7,760	
10A	6,950	9.7	21.0	70,600	4,050	
10B	10,120	48.9	26.3	249,900	9,180	
10C	9,160	32.7	25.5	202,100	7,580	
11A	7,530	17.2	15.9	94,400	4,770	
11B	9,630	40.6	28.6	233,400	8,690	
11C	8,970	37.4	21.9	203,100	7,680	
12A	8,280	24.7	19.3	128,500	6,120	
12B	9,640	38.6	26.3	221,800	8,430	
12C	9,610	38.4	24.6	216,300	8,300	
13A	7,830	18.5	17.1	100,400	5,130	
13B	9,480	40.7	25.3	225,000	8,440	
13C	9,300	36.6	24.1	206,900	7,910	

A UDOT Project WEST DAVIS CORRIDOR

Initial Run Assumptions

- Land Use Changes
 - Held county totals and trip totals
 - Imported 4,800 jobs , exported 3,800 households
 - Increased land use intensity along boulevards and centers
- Transit Incentives and Routes
 - Subsidized \$50 monthly pass
 - Additional BRT and local bus routes 15 min. peak headways
 - Increased walk/bike access to stations
- Increased bicycle ridership
 - 3% commute trips, 6% all trips
 - separate, protected bikeways

Initial Run Assumptions

- 17-22% capacity increase at innovative intersections
- Truck bypass on SR-193 between I-15 and Freeport
- Six lanes on SR-193 and Antelope between State and Hillfield
- Upgrade west Hill AFB gate at 200 South
- Bluff Road extended to Layton Parkway
- Optimize I-15 through ramp metering
- I-15 overpasses between SR-193, Antelope, and Hillfield

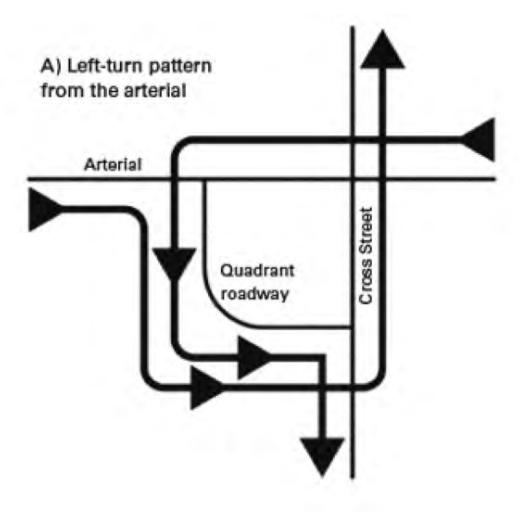
Results of Initial Run

Desription		Daily Total Delay (Hr)	North-South Road Lane-Miles with PM Period V/C >= 0.9	East-West Road Lane-Miles with PM Period V/C >= 0.9	Vehicle Miles Traveled (VMT) with PM Period V/C >= 0.9	Vehicle Hours Traveled (VHT) with PM Period V/C >=0.9	
NO ACTION			10,760	43.5	26.9	245,500	9,490
MEAN			8,950	31.4	23.2	177,700	7,160
1st QUARTILE			8,060	17.9	20.2	97,400	5,340
Alt.	Facility Type	Description					
SS	Shared Solutions	The Shared Solutions alternative	8,750.0	18.4	10.5	68,800	3,760

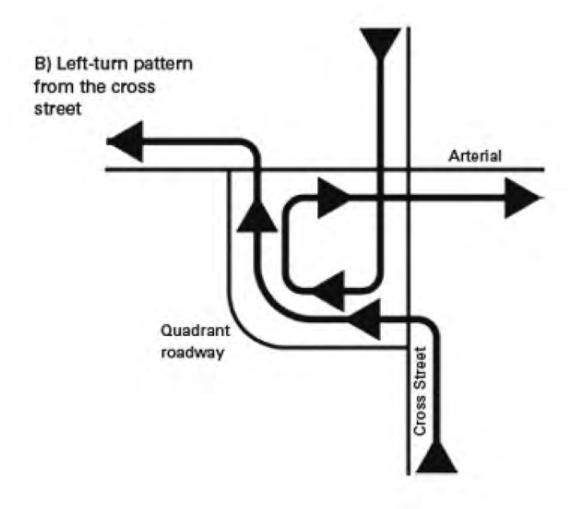
A UDOT Project WEST DAVIS CORRIDOR

Why are we here today?

- Share Initial Results
- Discuss and hear feedback on assumptions
 - Land Use Changes
 - Transit Elements
 - Trail Concepts
- Input on innovative intersection types and locations
- Next steps in evaluation

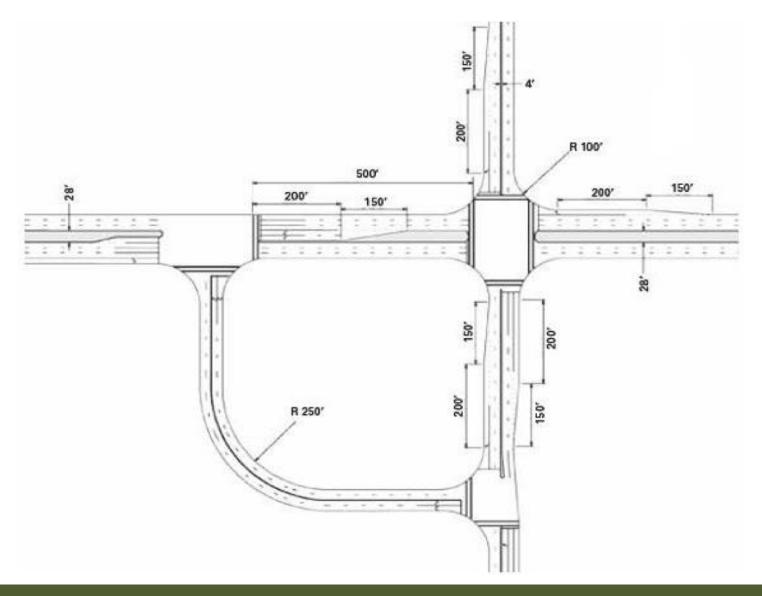

We need your input

- To finalize assumptions on intersections
- To determine impacts and estimate costs

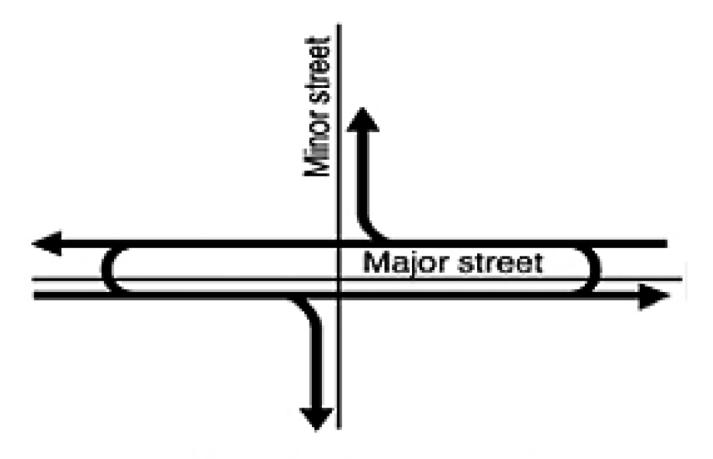

We need you to:

- Determine intersection type
- Plot location of quadrant or U-turn
- Note fatal flaws

Quadrant Intersection

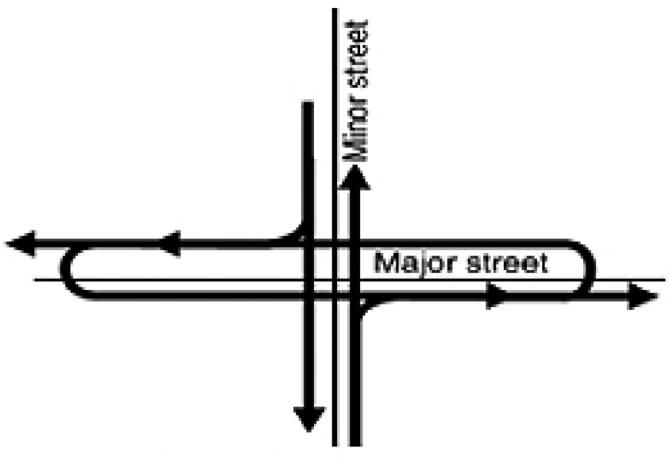


Quadrant Intersection

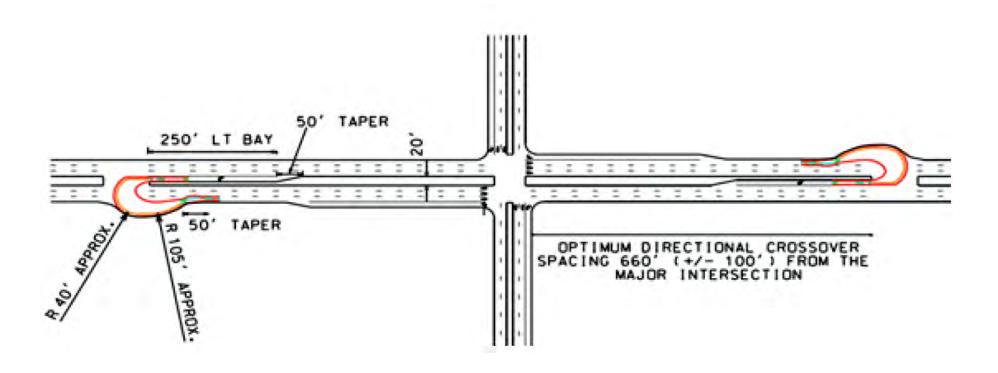


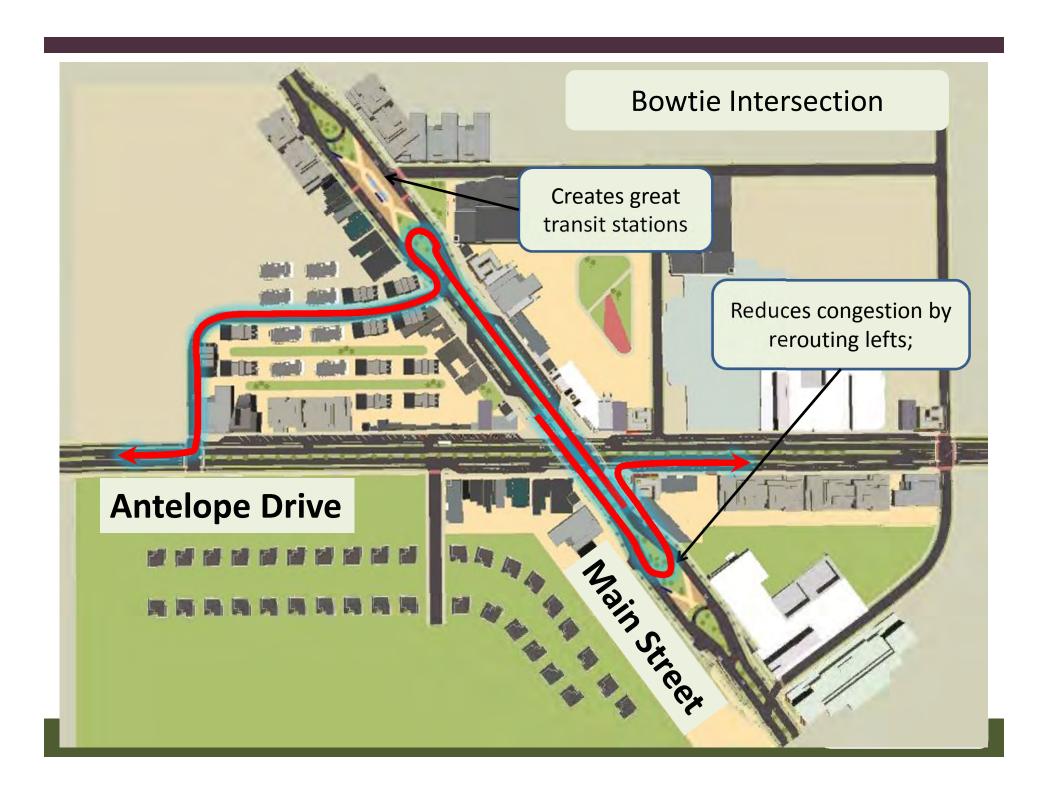
A UDOT Project WEST DAVIS CORRIDOR

Quadrant Intersection



Thru-turn Intersection


Major street movements


Thru-turn Intersection

Minor street movements

Thru-Turn Intersection

We need your input

- Determine intersection type
- Plot location of quadrant or U-turn
- Note fatal flaws

Next Steps

- Review input on intersections
- Begin preliminary design and measure impacts
- Prepare info. for city approvals of land use
- Prepare info. for UTA approvals of transit
- Finalize assumptions for modeling
- Finalize Level 1 screening
- Perform Level 2 screening
- Next workshop in February
- EIS schedule depends on the above

Meeting Notes

West Davis Corridor EIS UDOT Project No. SP-0067(14)0

Meeting Name: WDC Shared Solution Screening Results Workshop

Meeting Date: Thursday, December 18, 2014

Meeting Time: 2:00 – 5:00 PM

Location: West Point City Hall (3200 West 300 North, West Point City)

Notes:

1. Welcome and Introductions –Dan Adams

2. Purpose of the Meeting – Randy Jefferies

- Recap of alternative development process
- Review screening criteria
- Review screening assumptions
- Review initial screening results of the Shared Solution alternative
 - i. Initial screening shows alternative passes
 - 1. Need to verify assumptions
- **3.** Land Use Assumptions & Approval Process
 - Review Land Use Development Process Ivan Hooper
 - Determine footprint for boulevard/town centers
 - Boulevards 250 ft. from center of road, each side
 - Town Center 660 ft. in each direction from center of square
 - Station Communities looked for vacant available land near Frontrunner stations.
 - Looked at which parcels could be reasonably developed
 - Q & A City/County Feedback
 - Approval process What information do the cities need? Randy Jefferies
 - WDC team and Coalition will prepare info packet for each city.
 - Is this proposed land use, a reasonable and likely outcome of this transportation infrastructure? Would your city support this land use scenario?
 - Comment: Assumptions should be laid out over each city's master plan.
 Comment: Assumptions may not get support of community.
 - Show cities what is assumed versus what's there now, and compare assumptions versus general plans.
 - Comment: Would be helpful to know if there are areas within the study area that are doing worse than the overall regional transportation performance.
 - Comment: Break out acreage by development type per city.
 - Use development community to gather feedback on market impacts.
 - Want to make this an easy review process for the cities.

westdavis@utah.gov www.udot.utah.gov/WestDavis

Meeting Notes

West Davis Corridor EIS UDOT Project No. SP-0067(14)0

- Approval can be Mayor's letter, city resolution, etc. City's decision on how that support is given
 - Comment: Recommend there be a city resolution passed by city councils.
- o Comment: Concerns over infrastructure development costs.
- Comment: How does this process fit in with existing process of requesting transportation projects?
- Comment: Concerns about community reaction to land use changes
- o How does city's support impact WDC team decision making process?
 - Will effect assumptions alternative is based on.
- o Comment: The elements of the shared solution will not happen without the highway. While we are waiting, development will continue to occur out west.
- o Comment: Economic development may come faster with a highway.
- Comment: Job growth with Shared Solution will most likely be retail, small shops, etc.
- 4. Break 10 Minutes
- 5. Transit Assumptions & Approval Process
 - Review Transit Scope and Assumptions Mike Brown/Randy Jefferies
 - i. UTA discussion on subsidized fares
 - 1. Hive Passes for Davis and Weber County. \$50/month for unlimited transit use
 - 2. Existing UTA passes Kerry Doane
 - a. Pass partnerships exist with UTA, entity and user.
 - b. Proposal is a steep revenue reduction for UTA.
 - c. Transit ridership with Shared Solution showed 7,000 user increase
 - 3. Model takes into account what impedes or increases ridership.
 - 4. We are relying on UTA to determine if transit concepts are viable.
- 6. Trails Scope and Assumptions Roger Borgenicht
 - 60% of population want connected and protected bikeways. They are interested in the opportunity to ride, but want it to be safe.
 - Need to have separate real estate for bikes the promote safety.
 - Costs have not been estimated yet.
- 7. Next Steps & Schedule Randy Jefferies
 - Review input on intersections
 - Begin preliminary design and measure impacts
 - Prepare info for city approvals of land use
 - Prepare info for UTA approvals of transit
 - Finalize assumptions for modeling
 - Finalize Level 1 screening
 - Perform Level 2 screening
 - Next workshop in February